3 . If [ is the area of n sided regular polygon inscribed in a
circle of unit radius and O, be the area of the polygon
circumscribing the given circle, prove that
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Solution: -
3 . Let OAB be one triangle out of n of a n sided polygon
inscribed in a circle of radius 1.

Then ZAOB = &
n
04A=0B=1
.. Using Area of isosceles A with
vertical £0 and equal sides as

r= l.i"2 sin@ = iSinz—ﬂ
2 n

Further consider the n sided polygon subscribing on the circle.

A'MB' is the tangent of the circle at M.
= A'MB' 1 OM
= A'MO isright angled triangle, right angle at M.

A'M=tanZT
n



So, O, = ntan— @)
Iy

Now, we have to prove
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LHS= —/—-1= —1 (From (1) and (2))
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RHS = l—(—”] = . [1—sin“ — (From (1))
n n
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= WS(?] Hence Proved.



