If I_n is the area of n sided regular polygon inscribed in a circle of unit radius and O_n be the area of the polygon circumscribing the given circle, prove that

$$I_n = \frac{O_n}{2} \left(1 + \sqrt{1 - \left(\frac{2I_n}{n}\right)^2} \right)$$
 (2003 - 4 Marks)

Solution: -

3. Let *OAB* be one triangle out of n of a n sided polygon inscribed in a circle of radius 1.

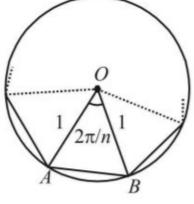
$$\angle AOB = \frac{2\pi}{n}$$

$$OA = OB = 1$$

:. Using Area of isosceles Δ with vertical $\angle \theta$ and equal sides as

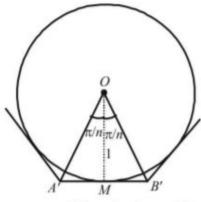
$$r = \frac{1}{2}r^2\sin\theta = \frac{1}{2}\sin\frac{2\pi}{n}$$

$$I_n = \frac{n}{2} \sin \frac{2\pi}{n}$$



.....(1)

Further consider the *n* sided polygon subscribing on the circle.



A'MB' is the tangent of the circle at M.

- \Rightarrow A'MB' \perp OM
- \Rightarrow A'MO is right angled triangle, right angle at M.

$$A'M = \tan\frac{\pi}{n}$$

So,
$$O_n = n \tan \frac{\pi}{n}$$
(2)

Now, we have to prove

$$I_n = \frac{O_n}{2} \left(1 + \sqrt{1 - \left(\frac{2I_n}{n}\right)^2} \right) \quad \text{or} \quad \frac{2I_n}{O_n} - 1 = \sqrt{1 - \left(\frac{2I_n}{n}\right)^2}$$

LHS =
$$\frac{2I_n}{O_n} - 1 = \frac{n \sin \frac{2\pi}{n}}{n \tan \frac{\pi}{n}} - 1$$
 (From (1) and (2))

$$=2\cos^2\frac{\pi}{n}-1=\cos\frac{2\pi}{n}$$

RHS =
$$\sqrt{1 - \left(\frac{2I_n}{n}\right)^2} = \sqrt{1 - \sin^2 \frac{2\pi}{n}}$$
 (From (1))

$$= \cos\left(\frac{2\pi}{n}\right)$$
 Hence Proved.